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1. Introduction

In recent investigations [2], [3], [9], Banks, Inman, and their colleagues carried out a series

of experimental and computational investigations on linear damping models for composite

material flexible structures. Other investigations [1], [7] involving experiments with flexible

structures point to the need to understand nonlinear aspects (in particular, damping) of

flexible structures. In this paper, we present a first step toward development of a rigorous

theoretical foundation for computational methods to study nonlinear mechanisms in such

structures.

Traditionally, nonlinearities in structural models usually arise when one needs to con-

sider large amplitude displacements. However a rather substantial engineering literature

(see Chap. 7 of [19]) exists on a wide variety of "nonlinear" effects in structures. There

are numerous sources proposed for these nonlinearities; they can be geometric (nonlinear

stretching; large curvature) or material (nonlinear stress-si_rain laws; nonlinear damping)

in nature. In mathematical models these can be manifested in nonlinear boundary con-

ditions, nonlinear stiffness operators, and/or nonlinear damping operators. For example,

in the usual derivations [11], [20], [24] for the Euler-Bernoulli theory of beams or the

Love-Kirchoff theory of plates, one must make several "linearizing" assumptions. The

commonly postulated Hooke's law is a linear stress-strain constitutive law. Even under

this assumption, one has a nonlinear moment-curvature relationship (and hence a non-

linear stiffness operator in the resulting partial differential equation model) unless one

makes the usual approximations (e.g., see Chap. 11 of [20]) in the curvature expression

1/R = uxx/[1 + u_] 3/2 arising in elementary beam theories.

While the ideas presented below can be used to develop a methodology to study nonlinear

stiffness operators (which, of course, can be of great importance in motions involving large

geometries or nonlinear material properties), we shall focus here on a theory for nonlinear

damping operators. Our approach will allow one to study damping mechanisms that do not

decouple across the modes of the structure and this has substantial practical significance.



The efforts of Balakrishnan, Taylor, and their colleagues(see[1]and the discussionsand

referencestherein) haveproducedevidencethat in complexstructures suchas the SCOLE

structure at NASA Langley, one cannot use linear damping models where the damping

decouplesacrossthe "linear undamped modes" to successfullydescribeexperimental ob-

servations. The presentation in [1] suggeststhat modal-basednonlinear damping might

be adequate. However, in light of the results in [3], [9], where it is found that for even

simple structures one can be in the unfortunate situation where damping doesno__!tdecou-

pie across the modes, this issue is far from settled, indeed, it is not clear whether such

damping should be modeled with a nonlinearity or whether it might be adequately mod-

eled with a linear mechanismthat doesnot decouple(i.e. cannot be described via modal

damping ratios in the usual engineeringmanner). Whatever the case,it is clear that fur-

ther investigations arenecessary.Thus one requiresmethods to study linear and nonlinear

damping mechanismsin models of secondorder systemswhere one doesnot assumethat

the damping model canbe simplified by modal representations.
2

Our goal then is to develop such a methodology for nonlinear systems. The theoret-

ical basis for the linear studies in [2], [3], [9] was an abstract approximation framework

developed by Banks and Ito in [4]. It is our purpose here to develop a theory for nonlin-

ear second order systems that parallels that of [4]. Since we shall use monotone operator

theory and nonlinear evolution systems (a theory which itself has been shown to possess

substantial limitations in treating very general nonlinearities), we expect this to be only

an initial contribution from our studies. However, the theory presented below will allow

us to treat a large class of nonlinear damping operators that are thought to be of practical

importance.

We develop an abstract approximation framework and convergence theory for the identi-

fication of nonlinear dissipation or damping mechanisms in second order distributed param-

eter systems. More precisely, we consider the estimation of nonlinear maximal monotone

damping operators in abstract wave equations with linear symmetric stiffness operators.

Our treatment here is in the spirit of our earlier work on first order systems in [8] and
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is an extension of Banks' and Ito's results in [4] concerning the identification of second

order linear systems. By rewriting the underlying second order initial value problem as

an equivalent first order system in an appropriate product space, we can, in principle, ap-

ply the abstract approximation theory developed in [8]. However, since the resulting first

order dynamics are not in general described by a strongly monotone operator, the results

we present below cannot be obtained via a direct application of our first order theory.

Only the essential ideas underlying the general abstract Banach space theory involving

m-accretive operators given in Section 2 of [8] are directly applicable.

In Section 2 below we review the abstract existence, uniqueness, regularity, and approx-

imation results for nonlinear evolution equations in Banach space with dynamics governed

by m-accretive operators. In the third section we consider inverse problems for abstract

wave equations with nonlinear damping. We reformulate these second order equations as

equivalent first order systems, and discuss existence and regularity of solutions. The ap-

proximation theory and convergence results are presented in Section 4. In the concluding

section we illustrate the application of our theory with an example involving estimation of

nonlinear velocity dependent damping in a one dimensional wave equation.

2. Abstract Nonlinear Evolution Equations in Banach Spaces

Let X0 be a Banach space with norm I'10" Let T > 0 and suppose that F0 C

LI(O,T;Xo). Let A0 : X0 -* 2 x° be an, in general, nonlinear set-valued operator with

Dora(A0) = {x e X0: Aox ¢ 0}. We assume that for some _o e N the operator A0 +_oI

is m-accretive. That is, that (i) Ix1 - x210 _< I(1 +/_w)(.Tl -- X2) + /_(gl -- Y2)]0 for every

xl,x2 C Dom(A0),yl C Aoxl, y2 E Aox2, and ,k > 0, and (ii) TC(I +.X(Ao +wI)) ==_

UxeDom(A0) (I + ,k (A0 + wI))z = X0 for some .k > 0. It is well known (see [10]) that the

operator Ao +wI being m-accretive implies that for each .k > 0 the resolvent of Ao +wI at

)_, J()_; A0 +wI) : X _ X, given by J(.k; Ao +w_r) = (I+ ,k(Ao +wI)) -_ is a single valued,

everywhere defined, nonexpansive (nonlinear) operator on X0.



We consider the quasi-autonomous initial value problem

(2.1) k(t) + Aox(t) g Fo(t), O < t <_ T

(2.2) x(O) = x °

with x ° E Dom(A0). By a (strong) solution to the initial value problem (2.1), (2.2) we

shall mean a strongly continuous function x : [0, T] --_ Xo which is absolutely continuous

on compact subintervals of (0, T), differentiable almost everywhere on (0, T), and satisfies

Fo(t ) - x(t) E Aox(t) for almost every t E (0, T) and x(0) = x °.

A two parameter family of nonlinear operators, {U0(t, s) : 0 < s < t < T}, defined on a

subset f_ of X0 is said to be a nonlinear evolution system on ft if it satisfies (i)

Uo(t, s)Uo(s, r)cp = Uo(t, r)_ for every _ e f_ and r, s, t with 0 _< r < s < t < T, and (ii) the

mapping (t,s) ---, Uo(t,s)c 2 is continuous from the triangle A = {(r, a): 0 _< a < r _< T} C

R 2 into X0 for each ¢2 C fL

It can be shown (see [8], [12], and [14]) that with A0,F0, and xo as they have been

defined above, there exists a unique nonlinear evolution system {U0(t, s) • 0 < s < t < T}

on Dora(A0) which satisfies

i

i

(i) ]Uo(t,s)c 2 -Uo(t,s)¢[o < e _(t-_) ]_- ¢[0, for all _, ¢ C Dom(A0) and (t,s) C A,

(ii)

t

]U0(s + t,s)cp- Uo(r + t,r)!Zlo <_ 2 f e_(`-') ]Fo (r + s)- F0 (r + r)] 0 dr, for all
0

CDom(A0) and allt >0suchthat s+t,r+t <T,

(iii) If the initial value problem (2.1), (2.2) has a strong solution x, then x(t) = Uo(t,s)x(s)

for all (t, s) C A.

The strongly continuous function x defined by x(t) = Uo(t, 0)x °, t C [0, T], is sometimes

referred to as the unique mild or generalized solution to (2.1), (2.2). It is immediately

clear from (iii) above that when the initial Value problem (2.1), (2.2) has a strong solution,

it coincides with the unique mild solution defined in terms of the nonlinear evolution
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system {Uo(t,s) :0 < s < t < T} on Dom(A0). Theorem 2.1 below is the fundamental

abstract approximation result upon which the approximation and convergence theory for

second order systems to be developed below will be based. It is similar in spirit to the

approximation results for nonlinear evolution systems given in [13] and [15].

For Banach spaces X and Y we denote the Banach spac e of continuous linear operators

from X into Y by £:(X, Y).

Theorem 2.1 For each n E 7 + = {1, 2, 3,... }, let Xn be a Banach space with norm

]. ],,. Let 7r, E £: (Zo,X,) with ]rn9l, _< v ]¢Pl0 where v is a positive constant independent

of n. Let Fn E LI(O,T;Xn) and let A,, : Xn --* 2 X" be an operator on Dom(A,,) C X,

with An +wI m-accretive. Suppose that there exists a function g E LI(0, T) for which

]F,(t)l,, < g(t), for almost every t E (0, T) and that

(i) for each _2 E Dom(A0) there exists {_n},,_=l with _,_ e Dora(An)

lira I_,, - _',*_1,, = 0,
n.--_ OO

such that

(ii) lirn IFn(t) - r_F0(t)l n = 0, a.e. t E (0, T),

(iii) for some A > O, we have lira [J(A;A_ -(-wI)_;,_ - _r.S(A;A0 +wI)_ln =- 0 whenever
?'t'--_ O0

_,, EXn and_EX0 with lim ]_,-_',_[, =0. Then if {U,(t,s):0<s<t<T} is
n---* OG

the evolution system on Dom(An) generated by An and Fn, we have

(2.3) lira [Un (t,s)_2_ - TrnUo (t,s)_] = 0
n.---_ oo

uniformly in s and t for (t,s) E A, whenever ¢p C Dora(A0) and ¢2,, E Dom(A,,),

with lim I_n - _'-_]n = 0.
n----* oo

The proof of Theorem 2.1, which we omit, is essentially the same as the proof of Theorem

2.2 in [8]. Some modification, albeit relatively simple and straightforward, is necessary

however due to the fact that in our application of Theorem 2.1 below we cannot choose the

X,,'s as subspaces of X0. In the proof this is handled by simply expressing all convergence

conditions and results in terms of the mappings 7r,. (Compare the statements of Theorem
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2.1 above and Theorem 2.2 in [8]). We note that the convergence result (2.3) is closely

related to the notion of factor convergence as given in [16]. We remark that this situation

(Xn _ X0) arises frequently in parameter estimation problems and the reader can find a

more complete discussion with examples along with a linear semigroup version of the above

approximation theorem in [5, Chapter II]. Whether or not (2.3) implies that Un(t,s)c2,

and U0(t, s)c 2 are close in any reasonable or useful sense depends of course upon how the

spaces X,, the norms I" In, and the mappings rr, are chosen. In our treatment below

we shall be able to apply the following corollary, which follows from Theorem 2.1 via a

straightforward application of the triangle inequality.

Corollary. 2.1 Suppose that there exists a Banach space X with norm I" Ix for which X0

is set-equivalent to X, for each n = 1, 2,... , Xn is a subspace of X, and all of the norms

]-]n,n = 0, 1,2,... are uniformly equivalent to I" Ix. Suppose further that Iim rrn_, =
n -"* (:X)

c2, _ E X. Then conditions (i) - (iii) in the statement of Theorem 2.1 can be replaced by

Li
(i) Dom(A0) C ._.ooDom(An) , where Li denotes the lower limit of the sequence of sets,

{Dom(A,)} (see [11], p. 335),

(ii) lim Fn(t) = -go(t) in X for a.e. t E (0, T), and

(iii) for some ,_ > 0, li_n J(A;A_ +wI):n = J(),;A= +wI)9_ in X for each 9_ E X when-

ever 9% E X, with lira _'n = 9O in X. Moreover, the conclusion (2.3) can be replaced

by

lim Un(t,s)T_ = Uo(t,s)c 2

in X, uniformly in t and s for (t, s) E

1,2,... with lim _=q0inX.

A, for each q; E Dom(A0) and _. E Dora(An), n =

3. The Identification of Second Order Systems

Although the identification of nonlinear dissipation mechanisms in infinite dimensional

second order (mechanical) systems is of primary interest to us here, we treat the somewhat
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moregeneralproblem which includesthe simultaneous estimation of linear stiffness. It will

become clear from our discussions below that an approach similar to the one we use here

could be used to develop techniques for the estimation of nonlinear stiffness in the presence

of linear damping. The extension of our general approach to handle inverse problems

involving the simultaneous identification of both nonlinear stiffness and damping is at

present still under investigation. We hope to be able to report on results in this direction

in the not too distant future.

Let H be a real Hilbert space with inner product < .,- > and corresponding norm I" l"

Let V be a reflexive Banach space with norm denoted by 11" II, and assume that V is

densely and continuously embedded in H. If we let V* denote the dual of V it follows that

V _ H '--* V* with the embedding of H in V* dense and continuous. The continuity of

the embeddings implies the existence of a constant # > 0 for which I_0[ < # Ik011, p E V,

and II_lI, -< # 1_1,¢2 E H, where II'II, denotes the uniform operator norm on V*. We

shall also use < .,. > to denote the usual extension of the H inner product to the duality

pairing between V and V*. Let Q and Z be metric spaces and let Q be a fixed, nonempty,

compact subset of Q.

For each q E O let the operator .A(q) E £:(V, V*) satisfy the following conditions:

(A1) (Symmetry) For all qo,¢ E If, < A(q)c2,¢ >=< %.A(q)¢ >;

(A2) (Continuity) For each c2 E V the map q _ .A(q)_ is continuous from Q c Q into V*;

(A3) (Equi-V-Coercivity) There exist constants aa E R and s0 > 0, both independent of

q E Q for which < A(q)c2,_ > +al ]¢212 >_ a0 1]_112, for all _0 E Y and q E Q;

(A4) (Equi-Boundedness) The operators .A(q) are uniformly bounded in q for q E Q; that

is, there exists a constant a > 0, independent of q E Q, for which IlA(q)_l[, _< a lip[I,

for all c2 E V.



In addition, for each q e Q let the operator B(q) : Dom(B (q)) C V --_ 2 v" satisfy the

following conditions:

(B1) (Domain) Dom(B(q)) = Dora(B) is independent of q for q G Q, and 0 C Dora(B);

(B2) (Continuity) For each 9_ E Dom(B), the map q ---*(B(q)_ is lower semi-continuous from

Q c Q into 2 v" (see [17], Section 185, page 173);

(B3) (Maximal Monotonicity) For all (q¢1,¢1), (_92,¢2) E l_Jq _ {(_,¢) E V x V* :

9_ E Dora (B),¢ E B(q)c2} we have < ¢1 - ¢2,c21 -_v2 > > 0 with 13q not properly

contained in any other subset of V x V* for which this monotonicity condition holds;

(B4) (Equi-Boundedness) The operators 13(q) map V-bounded subsets of Dom(B) into subsets

of V* which are uniformly V*-bounded in q for q E Q; that is, if S is a V-bounded subset

of Dom(B), then the set B(q)S is V*-bounded, uniformly in q for q E Q.

For eachq E Qlet u°(q) E V, ul(q) eH and f(.;q) E /q(0, T;H) where T> 0is

given and fixed. We shall require that the mappings q _ u°(q) E IT, q --. ui(q) E H, and

q --+ f(t;q), for almost every t C (0, T), are continuous from Q c Q into V,H, and H

respectively. For each z E Z, let ¢ (. ; z) Be a continuous mapping from C (0, T; V x H)

into R + and consider the identification problem given by:

%

IL

i

i

Q
_x

_i

!

E

(ID) Given observations z E ZI determine par_eters q E Q which minimize the performance

index

+(q)=¢((u(q),it(q));z) : :

where for each q E Q, u(q) = u (. ;q) is the mild solution to the second order initial

value problem

(3.1) fi(t) + 13(q)it(t) + A(q)u(t)-9 f (tiq), 0 < t < T

(3.2) = a(0) =

- " Z :

s



Following Barbu [10], we rewrite the second order initial value problem (3.1), (3.2) as

an equivalent first order system in a product space and then apply the abstract theory

outlined in Section 2 above to make the notion of a mild solution precise. Let X = V × H

be the Banach space endowed with the norm I" [ given by

1

In addition, for each q E Q let "H(q) be the Hilbert space which is set equivalent to X and

has as inner product < .,. >q given by

(3.3) < (qo,,g21) ,(_o2,¢2) >q-----< A(q)_l,_2 > q-a1 < _1,_.02 > -{- '( _/)1, _/)2 >.

Denote the corresponding induced norm by I• Iq. Conditions (A1)- (A4) above guarantee

that (3.a) indeed defines an inner product on X and that the Banach spaces {T/(q),['lq}

are uniformly (in q, for q E Q) norm equivalent to the space {X,[. Ix}.

For each q E O define the operator A(q):Dom(A (q)) C 7g(q) --+ 2 "u(q) by

A (q) (qo,_b) = (-¢, {_4 (q) qo+/3(q) g2} M H),

with Dom(A (q)) = { (_o, ¢) e V × V: ¢ E Dom(B), {A (q) So + B (q) ¢} Cl H ¢ O}.

Theorem 3.1 There exists an co C R, independent of q E Q, for which the operator

A(q) + wI is m-accretive.

Proof. Our proof is analogous to the one given by Barbu [10] in the case where the

space and operator do not depend upon a parameter. We first show that for w E R

sufficiently large the operator A(q)+ wI is monotone. For (qo, g2),(r/,O) E Dom(A(q))

and co C R let (_,¢) e (A(q)+cor)(_,g2) and (_,_) e (A(q)+ coI) (,7,0). It follows that

= -g2 +co_,_ = -O +corl,_b = A(q)_ + _b +cog2 and 0 = A(q)r I + 0 +coo for some

(p • B(q) g2 and some /} • B(q)O. Then, using the monotonicity of the operator /_(q)

9



(condition (B3)) we obtain

< (@,_) -- (7),0), (_P,_)) -- (7,0) >q

=< (-¢ + O,A(q) (c2 - rl) + (5 - O), (ga - 7, ¢ - O) >q +w [(c2 - 7,¢ -- 0)l_

=-_1 < ¢- 0,_,- 7 > + < _-_,¢-0 > +_oI(_,-7,¢- 0)1_

___--0_ 1 < ¢-- 0,_-- 7 > nt-OJ < A(q)(_ - rl),_-- 7 > +woq I_,- 715+_1¢- ol_

>_0

if

o_1 < u, v :>
;(u, _)) C

< A (q) u, u > "{-Ol 1 ]?2]5 _t- ]V[ 2

We note that Wo exists since

X,(u,v)¢O, qeQ}.

< A (q) u, v > +oq ]u] 2 + Iv] 2 - O_o114115+ Ivl_

1011# {[['t/[[2-[- [?Jl 2 } Ot1] £
< <

- _01[_l[_+iv[ 2 - 2min(_0,1)"

If w0 < O, we set w = 0 and henceforth assume without toss of generality that w >__O. Since

A(q) + wI is monotone, it is also accretive. Indeed, letting )_ > 0 , we see that

I(_,¢) - (,,o)1_< I(_,¢)- (7,0)1_

+ x < (@,_)- (,),O),(v,¢) - (7,0) >,

=< (_,,¢) - (7,o) + _{(_,_) - (?,_)}, (_,,¢) - (7, 0) >,

-<I(_,,¢) - (7,0) + A{(_,_) -(_, o)}1,I(_,¢) - (7,0)1,.

Thus we obtain

I(_,,_) - (7,o)]__<1(_,,¢) - (7,0) + _{(_, _) - (0, o)}1,.

To demonstrate m±accretivity, we let ,_ > 0, and let (7, 0) E _(q) be fixed but arbitrary,

and show that (I+ A(A(q)+wI))(cp,¢) _ (7,0) for some (_,¢) C Dom(A(q)). This

statement can be equivalently written as

(3.4)



(3.5) ¢ + A (A(q) ¢2 +/3(q)¢ +we) D 0.

Solving for _p in (3.4) and the substituting into (3.5), we obtain

(3.6) _ = (1 + _w) -1 (_¢ + r/)

(3.7) (1 _)t_ )_03)¢-_- )_2 ca _j_/_.))-1 .A (q)_)-)- ,_ (q) ¢ _ 0-_(1 --[- ,_o3) -1 ,,4 (q) r].

Define the operator T_ (q) E /:(V, V*) by

(3.8) Tx(q) =(1 + ,_w)I + _2(1 +/_)--1 _(q).

It follows from condition (A3) that for u E V

(3.9) < T_(q)_,_ > >___-_(_x)I_l_ + _-o(A)ll_ll2 ,

where n(A)- (lnt-)lu,') -- ,)t2(1-l-,_/.0)-1011 and r0(A)= )_2(lnt--_)-1_0- For /_ :> 0

appropriately chosen (small if al > 0; any _ > 0 if _1 < 0), it is seen that rl (A) > 0 and

hence that Tx (q) is monotone and coercive in the sense of Barbu [10, p. 34]. That is,

< T_,(q) u, u > / 11411_ _, as Ilull-_ _.

Therefore, applying Barbu's [10] Corollary 11.1.3 with his X, B and A chosen as X =

V, B = Tx(q) and A = ,_B(q), we find that T_(T_,(q) + AB(q)) = Y*. Consequently there

exists a ¢ E Dom(/3(q)) for which (3.7) holds. If we then obtain c2 from (3.6), it follows

that 7"£(1 + ,_(A(q) +wI)) = _(q) and the theorem is proved.

For each q E Q define F E L_(O,T;Tl(q)) by F(t;q)=(O,f(t;q)), a.e. t E (0, T), and

set x ° (q) = (u ° (q),u _ (q)) E "H (q). Theorem 3.1 and the discussions of Section 2 yield

that A(q) and F(-; q) generate a nonlinear evolution system {U (t, s; q) : 0 < s < t < T} on

Dom(A(q)). Henceforth we shall assume that x°(q) E Dom(A(q)) for each q E Q, and by a

mild solution, u(q), to the second order initial value problem (3.1), (3.2) we shall mean the

V-continuous (recall the uniform norm equivalence of X and "H(q)) function u(. ;q) given by

11



the first component of the 7"/(q)(or X) continuous function x (t; q) = U (t, 0; q)x ° (q),t E

[0, T]. We shall take 5 (.;q) to be the H-continuous second component of/(.;q).

At this point some remarks regarding the closure of the set Dom(A(q)) are in order. We

show that under a slightly more restrictive boundedness condition on the operators 13(q)

than condition (B4), the operator A(q) is in fact densely defined; that is, that Dom(A(q)) =

Theorem 3.2 If condition (B4) is replaced by the stronger condition that the operators

B(q) map H-bounded subsets of Dom(/3) into subsets of V* which are uniformly V*-

bounded in q for q E Q, then Dom(A(q)) = _(q).

Proof: Let (_2,¢) e 7-/(q) and set

Z

w

(qon,¢.) = J (_; A(q)+w[)(¢p, ¢) • Dom(A(q)),

for n = 1, 2, .... As in the proof of Theorem 3.1, we find

(3.10) _. = (1 + n-lw)- 1 (n-1¢. + _)

(3.11) (T,-1 (q) + n-ll3(q)) ¢, D ¢-n -1 (1 + n-'w) -1A(q)_

where the operator Tn-1 (q) e

we have for u C V

£(V, V*)is given by (318) with _ = n -1 . Recalling (3:9);

< T.-, (q)u,u > _> T1 (n-')[ul 2 + 7-o (n -1) II ll2,

where r, (n-')(1 q-n-lw)n-2(ld-n-lw) -1= - c_1 > 0 for n sufficiently large, and

r0(n -1) = n -2(l+n-xw) -ac_ 0. Note that lira T1 (n -a) = 1 and lim T0(n -1) = 0.
n'--*_ n ---'+ _

Now from condition (B3) we find that for some _. • /_(q)¢. and any 0 • B(q)(O)

12



(recall that 0 E Dora(B) by condition (B1)),

T 1 (r/-1) [¢n[ 2 --_ T0 (T/--1) [[_)n[[ 2 <: < Tn-, (q) ¢., ¢. >

< <Tn -l(q)¢n,¢n >+ n-1 < _.-O,¢n >

=< ¢-n -1 (1 + ,_-'_)-' .4(q)_ -,_-1_,¢. >

< [¢[ [4'=[ 4- n-' (1 + n-'w)-a [[A(q)_1[. J[¢-J[ + n-' [10[[.[[¢,,[[

(1+,,-,_)-'---2,-_(1.-,) I¢[_+ _ I¢-[_+ ,_o IIA(q) ','[I,_

+ _ I1¢.11_+ (l+"-"°) ii#ll_, + _o("-_)i1¢.11_
4 _o 4

Therefore

It follows that {¢,} is uniformly bounded in H and that {n-'[[_,,[[} is also uniformly

bounded. From (3.11) we obtain

Cn--_) e --t/-102¢n-n -2 (1 -_- _--lcd) -1 .,4 (q) ¢,--n -1 (1 + _2-1_) -1 ¢z[ (q) __/2-1_ (q) Cn.

Therefore for any ¢. e B (q)¢., we have

J]¢ n -- CJ[. -_<rt--ltM II¢"11. + n-2 (1 + n -lw)-' ]JA (q)¢-ll.

+ n-a (1 + n-l_) -' IIA(q) _'11.+ n-Xll@-II*

< n-'w# J¢.[ + n-2a [[¢.[[ + n-'a [IV[[ + n-' [J_.[[.

This estimate together with the uniform boundednessof I¢-I and n -1 II¢.ll and the hypoth-

esis of the theorem imply that lim _bn = ¢ in V*, Thus using the uniform boundedness

of {l¢.I} and the density of V in H, we obtain ¢. + ¢ weakly in H as n _ eo.

From (3.10) we find that

and

I_,.I < _-' I¢.1 + I_,l

lt_.II <--n-' I1¢-11+ II_ll

13



and therefore that the {iP-} areuniformly boundedin both H and V. Since (1 + n-lw) _,_

= n-1¢, + _, we have

_<(_-' + ,_-_o)I¢.1 + _-'_ I_1-' o
as n _ oc. Thus lim c2,, = _ in H. Using the density of H in V* and the uniform

n'---*OO

V-boundedness of the _b,,, it is not difficult to argue that p,, --* _, weakly in V. Therefore

(_,,¢,_) _ (q_,¢) weakly in X and thus the weak closure of Dom (A(q)) is all of X. Since

A(q) + wI is m-accretive by Theorem 3.1, the strong closure of Dom (A(q)) is convex. It

follows, therefore, that [)om(A(q)) = 7-/(q) and the theorem is proved.

When we consider examples in Section 5 below, we shall show that there is an im-

portant class of nonlinear models for dissipation which satisfy the boundedness condition

hypothesized in the statement of Theorem 3.2.

Finally, we note that another class of operators B(q) which lead to the operator A(q)

being densely defined is the one which includes operators B(q) E £.(V, V*) for which the

set {_ E V: B(q)_ E H} is dense in H. For then condition (A3) implies that {c2 E V:

.A(q)!_ E H}_is dense in V (see [22], Theorem IIi.2.B) and consequently Dom(A(q))=

{(_,¢) E V x V: A(q)_ + B(q)¢ c H} is dense in "H(q). In particular, this will be the

case for the well known linear Kelvin-Voigt (i.e., B(q) ,._ A(q)) and the so-called structural

(i.e. B(q).'., A(q)'}) viscoelastic damping models.

4. Approximation Theory and Convergence Results

!

We apply Pdtz-Galerkin finite element techniques to discretize the state equation, For

each n = 1,2,... let Hn be a finite dimensional subspace of H with Hn C V. Let

Pn : H _ H, denote the orthogonal projection of H onto Hn computed with respect to

the H inner product. We assume that PnDom(B) C Dom(B) and that the approximation

condition

(P) lirn llPn_,- _11= o, _ c v,

14



is satisfied. We note that condition (P) implies that lim IPnqo - ¢Pl = O, q_ C H as well.
tl----* ¢X)

For each n = 1,2,... and q E Q, let .A,,(q) e £.(Hn) = £(Hn,H,,) and Bn(q) :Dom

(13n) C Hn --4 2 H" denote the usual Galerkin approximations to the operators .A(q) and

B(q) respectively. More precisely, for _n E H,, let An(q)CZn = en where ¢,, is the unique

element in Hn guaranteed to exist by the Riesz representation theorem satisfying

< A(q)c2n, Xn > = < ¢n,Xn >,Xn C Hn. Similarly, for qon EDom(Bn) -- Dom(13)MHn ¢

O, let I3n(q)Cpn = {¢n e Hn :< ¢,Xn >=< en,Xn >,Xn E Hn,for some ¢ • B(q)_0n}.

We set f, (.;q)= Pnf (';q) E nl (0, T;gn), uO(q)= Pnu°(q)and u_(q)= Pnul(q).

Our approximation framework is based upon the following sequence of approximating

identification problems.

(IDn) For the observations z E Z given in problem (ID), determine parameters _,, C Q which

minimize the functional

a_n(q) = ¢ (un(q), fin(q); z)

where for each q E Q Un(q) = Un('; q) is the mild solution to the second order initial

value problem in Hn given by

(4.1) ii,(t)+Bn(q)izn(t)+ Mn(q)un(t) 2 f_(t;q), 0 < t < T,

(4.2) Un(0) = u°(q), tin(0) = u_(q).

Once again to establish the existence of a unique mild solution for each q E Q, and to

develop a convergence theory, we reformulate the initial value problem (4.1), (4.2) as an

equivalent first order vector system in an appropriate product space, and then apply the

abstract existence and approximation results outlined in Section 2.

For each n = 1, 2,... let Xn = H,, x Hn and for each q C Q let "H,,(q) denote the space

Xn considered as a subspace of the Hilbert space _(q). Define the operator A,_(q) : Dom

15



(An(q)) C "Hn(q) _ 2 _-(q) by

A.(q) (_2.,¢n) = (-¢., An(q)_,, + B_(q)¢n)

for each (_n,¢n) E Dom(An(q)) = Hnx Dom(Bn). Set Fn (t;q) = (0, f, (t;q)) for almost

every t E (0, T) and let x°(q)= (u°(q),u_(q)). Note that Fn (';q) E L1 (0, T;7/n(q)) and

that the assumptions that x°(q) 6 Dom(A(q)) and Pn Dora(B) C Dora (B) imply that

O(q) E Dom(A(q)).X n

==

=

With the above definitions of .A,(q) and B,(q), it is not difficult to argue that A,(q)+wI

is m-accretive in T/n(q). (The proof is analogous to the proof of Theorem 3.1.) It follows

that for each n = 1, 2,... and each q E Q, An(q) and Fn(.; q) generate a nonlinear evolution

system, {U_(t,s;q):0 < s < t < T} on Dom(A(q)). By a mild solution u,(q) = un(-;q)

to the initial value problem (4.1), (4.2) we shall mean the V-continuous first component of

xn (.; q) = Un (', 0; q)x°(q). The H-continuous second component of Xn('; q) will be taken

to be Un ('; q)-

Z

R

The primary result of this paper is given in the following theorem.

Theorem 4.1. For each n = 1,2,... the problem (IDn) admits a solution qn E Q.

Moreover, the sequence {qn}n_=l has a convergent subsequence {qnk },,_--1 with lira q,_k =
k----* oo

E Q, where _ is a solution to problem (ID).

Proof: In light of the compactness of Q and the continuity of ¢, the existence of a solution

qn 6 Q to problem (ID,) can be established by demonstrating that the mapping q ---.

x,(. ;q) is continuous from Q c Q into C(0, T; X). Furthermore, as we have demonstrated

in several of our earlier papers (see, for example, [6], [8]), showing that _ = lim q-_, is

indeed a solution to problem (ID) requires arguing that for any convergent sequence

{q,},__l withqn•Qand lim qn=q0•Qwehave

(4.3) Iim Ix.(t;q.)- x(t;qo)lx =0
n -....._ 0,0

=
=

=

%
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uniformly in t for t C [0, T]. Both the continuous dependence and the convergence (4.3)

can be demonstrated via an application of Corollary 2.1. We shall establish (4.3) here;

continuous dependence can be argued in an analogous manner.

Let {qn}nc___l C Q with lim qn = q0 in Q. The compactness of Q of course implies that
n----* OO

q0 e Q. In applying Theorem 2.1, we take X0 = Tl(qo),X,, = 7-/n(qn), Il. = Ilq. ,n =

0,1,2,... , and define 7rn 6 £(_(qo),7-ln(q,)) by 7r,(%¢) = (Pn_,P,_¢),(_,¢) •

T/(q0). Note that condition (P) implies that the rrn are uniformly bounded and converge

strongly in X to the identity. We set Fn = Fn (';an),F0 = F(';q0),An = An(qn),Ao =

A (q0), and will use Corollary 2.1 to establish that

o (qn) U(t,O;qo)x°(qo) X =0lifnoo U,(t,O;%)x_ -

uniformly in t, for t • [0, T]. Under the general assumptions that we have made above, all

of the hypotheses of Corollary 2.1 can be verified immediately with the exception of the

resolvent convergence condition (ii). We establish it here.

Let A > 0 be fixed,

lim 1(_,, Cn) - (¢P,¢)Ix = 0. It then follows that lim _.% = 9_ in V and
7l-"+OO _ B -"+ OO

H. Setting (7/,0)= J(A;A(qo)+_oI)(¢,¢)• Dom (A(qo)) and

(rb_,On) = J(A;An(q,_) +wI)(qpn,¢,,) • Dom(An (qn)) we obtain

let (_,¢) • _(q0), (_,,,¢,) • 7-/,,(q,,), and assume that

lim Cn = ¢ in
n ---,* Oo

(4.4) .=(1 + )_(d)--I (,_0 "}- (tO)

(4.5) (T), (qo)+ AB(qo))O 9 ¢ - A(1 + Sw) -1A(qo)q_

(4.6) ,n = (1 + Av.,)-' (A0,, + ¢p,,)

(4.7) (T,,,x(q_) + AB,,(q,))O, 9 Cn- A(I + Aw)-' A,, (q,,) _,,,

where T),(q)is given by (3.8), and

T,,,x (q)= (1 + Aw)I + A2 (1 + Aw)-' .4, (q)• £(H,,).
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Recalling (3.9), we choose )_ > 0 so that TI()_) > 0. We first show that the 0,_ E Hn

are uniformly V-bounded in n. From (3.9), conditions (A4), (B3), and (B4), and the

definitions of the operators .An(q) and Bn(q) we find for some 0,_ C B,_(qn)S, and any

_n e B(qn)(O)

r_ (.x)IO,I2+ ro (.x)II0nll2 < < T.x(qn)0n,0,_ >

= < Tn,A (qn)On,On >

<__ <T.,.x(qn)On,On>+.X<On-_,_,O,-,>

= < Cn -- ,X(1 + )_W) -1 .,4(qn)_2n-- ,'_n,On >

< 1¢,,I1o.I+ )_(1+ ._o3)-1 o¢ I1_,11ll0nll+ )'/_oII0,11

1 i_ _'_(_X)10,1_+ o_(x + ),_)-,
--_ 27.1 ()_""--_ ICn -31- T O/0

(1 + ),w) To ()_)+ To(___._2)II0nll=+ _o_+ _ II0.11=
4 Cro 4

I1O.11_

where fl0 = *up {11_11.: _ _ B(q)(O),q E Q}. It follows that

"rl(.k) 10n]_+ To(A) 1 a2(1 + Aw)-1 (1 +2 --7 I1°"11"< 2-,-,(_----_I¢"1_+ _o I1_"1t_+ _o_"_)/_°_"

The fact that lim I1_. - vii = 0 and lim ]¢n - ¢1 = 0 implies that II_-II and I¢-t are
n'"_ O0 n -----_ t:X_

uniformly bounded, and consequently that the On are uniformly V-bounded.

Once again from (3.9), for any On (q.) • 13 (q.) 0., O (qn) • 13 (qn) O, and O (qo) • 13 (qo) t_

we have

.,(_)le.-el _+.o(_)llO.-ell _ _< <T_(qn){e.-O},O.-6>

< <T_(q.){O.-6},en-e>+:_<_.(qn)-O(z.),o.-e>

= < T.,_ (q.) e. - T_(qo)e,e. - P_O> +A < O.(q.) - O(zo),e. - P_O>

+ < Tx (qn)On- TX (qo)tg, PnO-0 > +_ < On (qn)--O(qo),PnO- 0 >

+ < T_, (qo)O- T_, (qn)O, On --0 > +_ < O(qo)--O(qn),On --0 >.

Now from (4.7) there exists a 0,, • 13n(q,OOn for which

_=

E

Z

i
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Choose(_.(q.) to be any element in B(q.)0,. for which

< On(qn),X. > = < On,x,, >, Xn E H..

That such a (_n(q,,) E B(q.)O. exists is "guaranteed" by the definition of B.(q.).

recalling (4.5), we choose 0(q0) E/3 (q0) 0 so that Tx (q0)0 + A0(q0) =

¢- _(1 + AT) -1A(qo)¢?. Then

_-_(),) IO.- Ol_ -4-_-o(_) IIO.- Oll_

<_ < Tn,_, (qn)On + .kO,, - {T;_ (qo)O + .X0(qo)},0. - PnO >

+ <T>,(q,_)On-T),(qo)O, PnO-O>+.X<On(q,_)-O(qo),PnO-O>

+ < T>,(qo)O- T_,(q.)O, On -0 > +A < O(qo) -O(qn),On -0 >

Also,

= < ¢,_-¢,On-P,,O>+.X(I+.Xw) -1 <A(qo)_-A,_(q,_)_p,_,O,_-PnO>

+ < T_, (q.)On - T_, (qo)O,P.O - 0 > +.k < O. (q.) -0 (qo),P.O - 0 >

+ < T;_ (qo)O- T_, (q.)O, On- 0 > +)_ < O(qo)- O(q.),On -0 >

= <¢n-_),On-PnO>--_._(1-4-._o3) -1 <.A(qo)cp-.A(q.)_,On-PnO>

+)_(1+)_.,)-1 <A(q.)(_2 __),On_ P,,O> +(l + )_w)< On_O, pno_O>

+ )_2(1 + )_w)-I < .A(q,_)O.-.A(qo)O, PnO-O> +)_ < On(q.)--O(qo),PnO--O>

+ _2(1 + AW)--I< (.A(qo)O-.A(qn)O,O.-O> +.k < O(qo)-O(qn),On-O>

Iff)n-- ¢[ [0n -- PnO[3t-/_(1+ )_o2)-1 IlA(qo)_ - A(q.)_ll, 11o.- P_O[I

+ A(1 + A_o)-1 HA(q,)(_pn- _)11.II0,- P.Ot[+ (1 + Aw)10,- 0111',0- Ol

+ _ (1 + _)-1 IIA(q,) 0, - A(qo)011,11/',0= 011+ _110_(q,) = _(qo)ll,llP,0 = 011

+ _=(1 + _)-111.a(qo) 0 = .4 (q,) 011,110,=01l + _ll0(qo) = 0(q,)II. II0,=01l

19



{IO_1+ IOl)l¢_ - ¢l + A(I + A_)-' {llO_ll+ K IlOll}IlA(qo)_ - A (q_) _[I,

+ _/(I + _la) -_ a {IIO.ll+ z_"IlOll}II_. - _ll + (1 + _) {[o.1+ 1o]}IP,,o- Ol
=

+ A_(1 + _)-' _ {Ile.II+ Ilell}lIP_O- ell + _{11£(q.)II. + IIO(qo)II.}IIP_e- ell

+ A2 (1 + _xa) -1 {lle.lI+ Ileli}IIA(qo)e- _(q.) ell. + _ {lIO.ll+ ileil}IIO(qo)- o(q.)ll.

where K is the uniform bound on the operators P,, C /_(V, V) guaranteed to exist by

condition (P). By condition (B2) we can choose 0(qn) e 13(q,)O so that limoo 0(q,) = 0(q0)

in V*. Thus, the fact that lim _/,, = _ in H, lim _,_ = _ in V, the uniform boundedness
71,---"OO n--_ oo

of IlO, II (and therefore [0¼] as well), the continuity condition (A2), and the boundedness

condition (B4) imply that lim 0, = 0 in both H and V. From (4.4) and (4.6) it then
71---"OO

immediately follows that lim 77, = r/in V and the theorem is proved.
n .--._ (_:)

Remark In practice it is frequently the case that the admissible parameter set Q is

also infinite dimensional; for example, when the unknown parameters to be identified are

elements in a function space. In this situation the set Q must also be discretized and

Theorem 4.1 must, to a certain degree, be modified. For each m = 1, 2,... let I "_ • Q c

{2 _ {2 be a continuous map with range Qm = i,n(O) in a finite dimensional subspace

of (2 and with the property that lim Ira(q) = q, uniformly in q for q E Q. We then

define the doubly indexed sequence of approximating identification problems (IDa) by

letting problem (ID'_) be the problem (ID,,) with the set Q replaced by the set Qm. The

modification to Theorem 4.1 would state that each of these problems admits a solution

_]_ E Qm and that the sequence {q,m } will have a Q-convergent subsequence whose limit

is in Q and is a solution to problem (ID). We note that each of the problems (IDa)

involves the minimization of a continuous functional over a compact subset of Euclidean

space subject to finite dimensional state space (ODE) constraints. As such, for each m and

n, problem (ID'_) may be solved using standard computational algorithms and techniques.

=

=

=_

w

z
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5. An Example

In order to illustrate the application of the general theory that was presented above, we

consider the problem of estimating or identifying the nonlinear damping term in the forced

one dimensional wave equation

(5.1) 02u (t, rl) + b(q) (Ou ) O_uat 2 -_(t,_) -a-ff_-i_2 (t, rl) _ f (t, rl),t > O, 0<rl<l

with the Dirichlet boundary conditions

(5.2)

and initial data

u (t,0) -- 0, u (t, 1)--0, t>O

Ou

(5.3) u(0,,) = u°(,), -b7(0,,) = ul(,), 0<,< 1.

We note that for definiteness we have chosen the Dirichlet boundary conditions (5.2), how-

ever all of the discussion below would remain with any of the usual self-adjoint boundary

conditions (i.e. Neumann, Robin, etc.). We assume that a > 0, f E L2((O,T)_< (0, 1)), u ° E

H_(0,1) and U 1 E L2(0, 1). Let Q be a metric space and let Q c Q be compact. For each

q E Q we assume that the mapping b(q)(.) : R _ 2 R satisfies the following conditions:

(bl) The set {_ E H ] (0, 1): there exists a ¢ E H -1 (0,1) such that ¢(_) E b(q) (_ (r/)), a.e.

r/E (0, 1)) is independent of q E Q, and 0 E b(q)(O),

(b2) The mapping q --+ b(q)(O) is lower semi-continuous from Q c Q into 2 _ for almost every

0ER,

(b3) For each q E Q the mapping b(q)(.) is nondecreasing and for some )_ > 0 the inclusion

0 + )_b(q)(O) _ _ has a solution 0 E R for each ( E N (i.e. b(q)(.) is maximal monotone

in N),

(b4) There exists a polynomial p, independent of q E Q for which 101 p(10l) for all 0 E

b(q)(lel) , and almost every 8 E R.
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To reformulate the initial-boundary value problem (5.1) - (5.3) as an abstract systemof

the form (3.1), (3.2), we set H = L2(0, 1) endowed with the standard inner product, and
1

let V = H01 (0,1) be endowed with the norm []c2[[ = f [D_(r/)[ 2 dr/. In this case we have
0

V* = H -1 (0, 1) together with the dense and continuous embeddings V _ H _ V*. We

define the operator A C £(V, V*) by

t

(5.4) < .A_2, ¢ >=a/D_ (r/) D¢ (:r/) dr/,
0

p,¢ • H01 (0,1).

It is easily shown and well known that the operator .A given by (5.4) satisfies conditions

(A1)- (A4). (Note that in the present example the operator .A is assumed known and as

such does not depend on q.)

To define the operator t3(q) we follow the treatment in [18] and use the notion of a

subdifferential of a proper convex lower semicontinuous mapping (see [10]). For each q

• Q let bo(q)(') denote the minimal section of the mapping b(q)(.). That is bo(q)(') is the

single-valued mapping from R into R defined by bo(q) = _, where _ is the unique element

in b(q)(O) of minimal absolute value. That the minimal section of b(q)(.) is well defined is

a consequence of condition (53). Since Dom(b(q)(-)) = R, the proper, convex, lower semi

-continuous function j(.; q) : R _ R can be defined by

0

j (0; q) = / bo(q)(_) d_
*J

0

where R denotes the extended real numbers. It can be shown that j(.; q) is bounded below

by an affine function so that j(O; q) > -c_, _ • R, and that Oj (-; q) = b(q) (-), where 0

denotes the subdifferential operator. For each q C Q define 7('; q)" H01 (0, 1) ---* R by

fj(_(r/);q)dr/ if j(_,(.);q) •/h (0, 1)
7(_; q) = 0

+oo otherwise.

Then 7(,; q) is also proper, convex and lower semi-continuous and we define t3(q) :

Dom(B) C V _ 2 V" by

(5.5) u = q),

_=

i

=
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where 9_E Dom(B(q))= {_aE H](O, 1):OT(qa;q)#O}. (The fact that Dom(B(q))=

Dom(/3) is independent of q is a consequence of condition (bl).) It can be shown (see, for

example, [10, p. 61]) that for qa E Dom(B),¢ E /3(q)9_ if and only if ¢(r/) E b(q) (qp(r/)),

a.e. 77E (0, 1), and via conditions (bl)-(b4), that the operators B(q) given by (5.5) satisfy

conditions (B1)-(84).

To illustrate the formulation of an inverse problem we take the observation space Z to
It

be given by Z = x {R t x L2 (0,1)} and the performance index from C(0, T; V x H) into
i=1

the nonnegative reals to be given by the weighted least-squares functional

_(_,_; z)= Z {p'_ lu(t',_J) - zl,jl%_" f I_(t', _)- z?(_)12
i=1 j=l 0

for (u, li) E C(O,T;VxH) and z = ((z],z2),...(z_,z_)) E Z with pi,cri > O,i =

1,2,...,v,0<tl <t2<...<t,<T, and0<771<7/2..-<r/e< 1.

We provide two specific examples of possible choices of the parameter space Q, the

admissible parameter set Q, and mappings b(q)(.) : _ _ 2 R satifying conditions (bl) -

(b4). A relatively simple example might involve the estimation of the constant parameters

q = (c_0, fl0,00) in the saturating polynomial function

f fl0 161_° sgn (6), --6o < e _< 00
b(q)(O) ! Z0le01_°_(6), 161> e0.

In this case we would have Q = R 3 and Q = {(ao,fl0, Oo) " 0 < Cro < 5,0 < flo </3,0 <

80 < 8} for some c_,/5, 0 > 0 given and fixed. We note that when ao = O, in order to satisfy

the maximality in condition (b3) we must take

{ _osg,_(O),_(q)(o)= [-_o,_o]

We note also that when 5 _< 2 we have Dom(/3) = V and that the operators B(q) given

by (5.5) map H-bounded subsets of V into V*-bounded subsets, uniformly in q for q C Q.

Thus the hypotheses of Theorem 3.2 are satisfied and we see that Dom(A(q)) = V x H.
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A second,somewhatmore challengingproblem might involve the estimation of a func-

tional parameter. In this casewe take {2 = CB(R), the set of all bounded, continuous, real

valued functions on N endowed with the supremum norm. We take Q to be the {2-closure

of the set

{q G Q: q(O) = -q(-O),Oq(O) >_ 0,for 0 G n,

(5.6) ]q (0)l = q(Oo),forlOI > Oo,q • H 1 (-00,00),

Iqlm(-Oo,Oo)< Ko, q' (0)>_O, for 0 • (-0o,0o)}
where Oo and Ko are given positive constants. It is not difficult to argue (via the Arzela-

Ascoli Theorem) that Q is a compact subset of {2. For q • Q we set b(q)(O) = q(0), 0 • N.

With regard to illustrating the approximation or discretization of the state, we briefly

outline a linear spline-based scheme. For each n = 1, 2,..., let Hn = span {_{ } j=1"-1where

¢{ is the j - th linear B-spline on the interval [0, 1] defined with respect to the uniform

mesh {O,1/n,2/n,... ,1}. That is,

o 0<7<@j+l-n }_<7<

o
j = 1,2,... ,n - 1. It is immediately clear that H, C V = H01(0,1), for each n. Let

Pn : H ---* H, denote the orthogonal projection of L_(0, 1) onto Hn computed with respect

to the usual L2 inner product. Using well known estimates for interpolatory splines (for

example, those found in [23]) it can be argued that condition (P) is satisfied.

In the example involving the identification of a functional parameter, the admissible

parameter set Q chosen to be the {2-closure of the set given in (5.6) can be discretized as

712

follows. For each m = 1,2,... and O • R + let {_b2 (-, O) } j=0 denote the standard linear

B-splines on the interval [0,@] defined with respect to the uniform mesh {0, o 2_0_, m,"',O}

and then extended to a continuous function on the entire positive real line via ¢_" (0; 19) =

¢2 (®; ®),0 _> 19. For q • O set

rt2

j=l
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for 0 C N where Oq is the number in (0,00) for which Iq(0)l = q(Oq),lol >__oq. (Note that

the lower limit in the sum in (5.7) is 1 rather than 0 since q C Q implies q(0) = 0.) Using

the Peano Kernel Theorem (see [21] p. 22) it can be argued that

IIImq - qll_ = sup I/TMq - ql < 1

and consequently that lim Imq = q, uniformly in q for q E Q. We would then set
/rt ----+ _

Qm=Im(Q).

For Hn and Qm as defined above, the finite dimensional initial value problem (4.1), (4.2)

takes the form

(5.8) Mnibn(t)+Cn(_b.(t);q m) + I(nw.(t)= Fn(t), O < t < T,

1
(5.9) M.w.(O) = Wn,° M.(v.(O) = w.,

1where F,(t),w °, and w n are the (n-1)-vectors whose i-th components are given by Fi(t)

• li < ul i= < f(t), _ >,w °i = < u °,_i > and w n = ,_on >, respectively, and Mn and Kn

are the (n- 1) x (n- 1) matrices whose (i,j)-th entries are given by M i'j =< _i,_o{ >

and I(_ 'j =< a_oi,c2 j >. The vector function Cn(" ;qm): an-X _ R"-' is given by

_i

, m ]C.(v, q ) =

i--I

n

{nx -i + 1}q m ({nx -i} {v i- V i-I } q- vi) dx

+ ] {i+l-nx}qm({nx-i}{v i+'-v i}+v i) dx,

n

i = 1,2,.-.,n- 1, for v C W _-1 with v°,v _ = 0. If wn(' ;qm) is the solution to

the second order initial value problem (5.8), (5.9) corresponding to q,n C Qm, then
n--1 n--1

u_(t;qm)= __. wJ(t;qm)qoJandit_(t;qm)= _ (vJ(t;qm)c2J, fort e [0, T].Ifq m e Qm
j=l j=l

m

is given by qm(O) = _ qr_¢?(lO];Oqm) sgn(O), 0 • R, the identification problem (IDa)
j=l

25



becomesone of determining parameters (_n, ..., _m,_q,,,)in somecompact subsetof R m+l

which minimize _n(q m) = ¢(u,(qm), fin(qm); Z).

A discussion of some implementation questions relevant to the schemes outlined (in

particular with regard to supercomputing) together with numerical results can be found

in [6].
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